Как определить момент пары сил. Пара сил. Свойства пар сил

1. Плоская система сходящихся сил

Система сходящихся сил находится в равновесии , когда алгебраические суммы проекций ее слагаемых на каждую из двух координатных осей равны нулю.

Проекция силы на ось.

Осью называют прямую линию, которой приписано определенное направление. Проекция вектора на ось является скалярной величиной.

Проекция вектора считается положительной (+), если направление от начала к ее концу совпадает с положительным направлением оси. Проекция вектора считается отрицательной (-), если направление от начала проекции к ее концу противоположно положительному направлению оси.

Если сила совпадает с положительным направлением оси, но угол будет тупой – тогда проекция силы на ось будет отрицательною.

Итак, проекция силы на ось координат равна произведению модуля силы на косинус или синус угла между вектором силы и положительным направлением оси.

Силу, расположенную на плоскости хОу, можно спроецировать на две координатные оси Ох и Оу:

; ; .

Проекция векторной суммы на ось.

Геометрическая сумма, или равнодействующая, этих сил

определяется замыкающей стороной силового многоугольника: ,

где п – число слагаемых векторов.

Итак, проекция векторной суммы или равнодействующей на какую-либо ось равна алгебраической сумме проекций слагаемых векторов на ту же ось.

2. Пара сил

Сумма проекций пары сил на ось х и на ось у равна нулю, поэтому пара сил не имеет равнодействующей. Несмотря на это тело под действием пары сил находится в равновесии.

Способность пары сил производить вращение определяется моментом пары , равным произведению силы на кратчайшее расстояние между линиями действия сил. Обозначим момент пары М , а кратчайшее расстояние между силами а , тогда абсолютное значение момента:

Кратчайшее расстояние между линиями действия сил называется – плечом пары , поэтому можно сказать, что момент пары сил по абсолютному значению равен произведению одной из сил на ее плечо.

Момент пары сил можно показывать дугообразной стрелкой, указывающей направление вращения.

Две пары сил считаются эквивалентными в том случае, если после замены одной пары другой механическое состояние тела не изменяется, т.е. не изменяется движение тела или не нарушается его равновесие.

Эффект действия пары сил на твердое тело не зависит от ее положения в плоскости. Таким образом, пару сил можно переносить в плоскости ее действия в любое положение.

Еще одно свойство пары сил, которое является основой для сложения пар:

− не нарушая состояния тела, можно как угодно изменять модули сил и плечо пары, только бы момент пары оставался неизменным.

По определению пары сил эквивалентны, т.е. производят одинаковое действие, если их моменты равны.

Если, изменив значения сил и плечо новой пары, мы сохраним равенство их моментов М 1 = М 2 или F 1 a = F 2 b, то состояние тела от такой замены не нарушится.

Подобно силам пары можно складывать. Пара, заменяющая собой действие данных пар, называется результирующей. Действие пары сил полностью определяется ее моментом и направлением вращения. Исходя из этого, сложение пар производится алгебраическим суммированием их моментов, т.е. момент результирующей пары равен алгебраической сумме моментов составляющих пар.

Момент результирующей пары определится по формуле:

М= М 1 + М 2 +... + М п. =

М і ,

Где моменты пар, вращающие по часовой стрелке, принимаются положительными, а против часовой стрелки – отрицательными. На основании приведенного правила сложения пар устанавливается условие равновесия системы пар лежащих в одной плоскости, а именно: для равновесия системы пар необходимо и достаточно, чтобы момент результирующей пары равнялся нулю или чтобы алгебраическая сумма моментов пар равнялась нулю:

Момент силы относительно точки и оси.

Момент силы относительно точки определяется произведением модуля силы на длину перпендикуляра, опущенного из точки на линию действия силы.

При закреплении тела в точке О сила

стремится поворачивать его вокруг этой точки. Точка О, относительно которой берется момент, называется центром момента , а длина перпендикуляра а – плечом относительно центра момента .

Момент силы

относительно О определяется произведением силы на плечо: .

Момент принято считать положительным, если сила стремится вращать тело по часовой стрелке, а отрицательным - против часовой стрелки. Между моментом пары и моментом силы есть одно существенное различие. Численное значение и направление момента пары сил не зависит от положения этой пары в плоскости. Значение и направление (знак) момента силы зависит от положения точки, относительно которой определяется момент.

Если сила расположена в плоскости, перпендикулярной к оси, момент этой силы определяется произведением ее величины на плечо

относительно точки пересечения оси и плоскости:

Следовательно, для определения момента силы относительно оси нужно спроектировать силу на плоскость, перпендикулярную оси, и найти момент проекции силы относительно точки пересечения оси с этой плоскостью.

3. Метод кинетостатики

Представим себе материальную точку массой т, движущуюся с ускорением а под действием какой-то системы активных и реактивных сил, равнодействующая которых равна F.

Воспользуемся одной из известных нам формул (основным уравнением динамики) для того, чтобы уравнения движения записать в форме уравнений равновесия (метод кинетостатики):

Перепишем это уравнение в следующем виде:

Выражение обозначается К ин и называется силой инерции:

Сила инерции есть вектор, равный произведению массы точки на ее ускорение и направленный в сторону, противоположную ускорению.

Это равенство, являющееся математическим выражением принципа, который носит имя французского ученого Даламбера (1717-1783), можно рассматривать как уравнение равновесия материальной точки. Следует подчеркнуть, что полученное равенство, хотя и названо уравнением равновесия, в действительности является видоизмененным уравнением движения материальной точки.

Принцип Даламбера формулируется гак: активные и реактивные силы, действующие на материальную точку, вместе с силами инерции образуют систему взаимно уравновешенных сил, удовлетворяющую всем условиям равновесия.

Следует помнить, что сила инерции приложена к рассматриваемой материальной точке условно, но для связи, вызывающей ускорение, она в определенном смысле является реальной. Обладая свойством инерции, всякое тело стремится сохранять свою скорость по модулю и направлению неизменной, в результате чего оно будет действовать на связь, вызывающую ускорение, с силой, равной силе инерции. В качестве примера действия сил инерции можно привести случаи разрушения маховиков при достижении ими критической угловой скорости. Во всяком вращающемся теле действуют силы инерции, так как каждая частица этого тела имеет ускорение, а соседние частицы являются для нее связями. Отметим, что весом тела называется сила, с которой тело вследствие притяжения Земли действует на опору (или подвес), удерживающую его от свободного падения. Если тело и опора неподвижны, то вес тела равен его силе тяжести.

4. Момент силы относительно точки

Рассмотрим гайку, которую затягивают гаечным ключом определенной длины, прикладывая к концу ключа мускульное усилие. Если взять гаечный ключ в несколько раз длиннее, то прилагая то же усилие, гайку можно затянуть значительно сильнее. Из этого следует, что одна и та же сила может оказывать различное вращательное действие. Вращательное действие силы характеризуется моментом силы.

Понятие момента силы относительно точки ввел в механику итальянский ученый и художник эпохи Возрождения Леонардо да Винчи (1452-1519).

Моментом силы относительно точки называется произведение модуля силы на ее плечо:

М 0 (¥) = РИ.

Точка, относительно которой берется момент, называется центром момента. Плечом силы относительно точки называется кратчайшее расстояние от центра момента до линии действия силы.

Парой сил называется система двух равных по модулю, параллельных и направленных в противоположные стороны сил, действующих на твердое тело (рис. 17).

Плоскость , содержащая линии действия сил пары и называется плоскостью действия сил пары . Кратчайшее расстояние между линиями действия сил пары называется плечом пары .

Вращающее действие пары на твердое тело зависит от модуля сил пары , плеча , положения плоскости действия пары и направления вращения.

Мерой этого действие пары является ее вектор-момент . Если все силы и пары, приложенные к телу, лежат в одной плоскости, то момент пары можно рассматривать как алгебраическую величину, равную

Момент пары считается положительным , если он стремиться вращать тело против хода часовой стрелки и отрицательным , если - по ходу часовой стрелки.

Момент пары, как и момент силы, измеряется в (система СИ) и в (система МКГСС).

Алгебраическая сумма моментов сил пары относительно произвольной точки в плоскости ее действия не зависит от выбора этой точки и равна моменту пары. Действительно, определим сумму моментов сил и пары (рис. 18) относительно произвольной точки , расположенной в плоскости действия пары.

Так как , то получим:

Если силы и пары, приложенные к телу, лежат в разных плоскостях, то момент пары, как и момент силы, необходимо рассматривать как вектор. Вводим в связи с этим общее определение момента пары.

Моментом пары является вектор , равный по модулю произведению модуля сил пары на ее плечо и направленный перпендикулярно плоскости ее действия в ту сторону, откуда поворот, который пара стремится сообщить телу, виден происходящим в направлении против хода часовой стрелки (рис. 17).

Модуль вектора равен

Из определения векторов и следует, что момент пары (рис. 17) равен по модулю и направлению моменту любой из сил пары (например, ) относительно точки приложения другой, то есть

Используя формулу 16, имеем:

Таким образом, момент пары можно представить в виде векторного произведения (23), в котором – радиус-вектор точки приложения силы относительно точки приложения силы (рис.17).

Свойства пар выражаются следующими теоремами, которые приводятся здесь без доказательств.

1) Действие пары на твердое тело не изменится, если перенести пару в плоскости ее действия в любое другое положение.

2) Действие пары на твердое тело не изменится, если модуль сил пары и ее плечо изменить так, чтобы модуль момента пары сохранился неизменным.

3) Действие пары на твердое тело не изменится, если перенести пару в любую другую плоскость, параллельную плоскости ее действия.


4) Система пар, приложенных к твердому телу, может быть заменена одной результирующей парой с моментом , равным геометрической сумме моментов слагаемых пар:

Из теорем следует, что пару, выраженную вектором , в твердом теле можно как угодно перенести в плоскости действия пары, а также перенести в любую параллельную плоскость; поэтому момент пары является свободным вектором , т.е. его можно изобразить приложенным в любой точке твердого тела.

Вопросы для самопроверки к разделу 2

1. Определить момент силы относительно точки как алгебраическую величину, как вектор.

2. В каком случае момент силы относительно точки равен нулю?

3. Что называется моментом силы относительно оси?

4. В каких случаях момент силы относительно оси равен нулю?

5. Можно ли открыть дверь, если все приложенные к ней силы располагаются в плоскости двери?

6. Какова зависимость между моментами силы относительно оси и относительно точки, лежащей на этой оси?

7. Выведите формулы для моментов силы относительно трех координатных осей, используя представление о векторе момента силы относительно точки в виде векторного произведения.

8. Что называется парой сил? Чему равен момент пары?

9. Какие факторы определяют действие пары на твердое тело?

10. Как направлен, где приложен вектор момента пары?

11. Сформулируйте условие равновесия системы пар сил, приложенных к твердому телу.

12. Могут ли уравновесить друг друга две пары сил, лежащие в параллельных плоскостях; в пересекающихся плоскостях?

13. Каким образом можно изменять плечо и модуль сил пары, не изменяя действие пары на твердое тело?

14. Как складываются пары, лежащие в одной плоскости; в пересекающихся плоскостях?

Парой сил называется система двух равных по модулю, параллельных и направленных в противоположные стороны сил, действующих на абс. твердое тело. Моментом пары наз. величина, равная взятому с соотв. знаком произведению модуля одной из сил пары на ее плечо (Понятие момента силы связано с точкой, относительно к-рой берется момент. Момент пары определяется только ее моментом и плечом; ни с какой точкой плоскости эта величина не связана). Св-ва: сумма моментов сил пары относительно точки не зависит от выбора точки и всегда равняется моменту пары, пара сил не имеет равнодействующей - нельзя уравновесить одной силой.

Сложение пар сил. Система пар, лежащих в одной плоскости, эквивалентна одной паре, лежащей в той же плоскости и имеющей момент, равный алгебраической сумме моментов слагаемых пар.

Сложение двух параллельных сил. Равнодействующая двух па­раллельных сил Р 1 и Р 2 (фиг.19, а и б), направленных в одну или в противоположные стороны, равна их алгебраической сумме

R= Р 1 ± Р 2 и делит отрезок между точками приложения сил, внут­ренним или внешним образом, на части, обратно пропорциональные этим силам:

AC/P 2 =BC/P 1 =AB/R

Это правило неприменимо для равных по величине и противоположных по направлению сил.

10Трением качения называется сопротивление, возникающее при качении одного тела по поверхности другого.

Рис.34

Рассмотрим круглый цилиндрический каток радиуса R и веса , лежащий на горизонтальной шероховатой плоскости. Приложим к оси катка силу(рис. 34, а), меньшуюF пр. Тогда в точке А возникает сила трения , численно равнаяQ , которая будет препятствовать скольжению цилиндра по плоскости. Если считать нормальную реакцию тоже приложенной в точкеА , то она уравновесит силу , а силы иобразуют пару, вызывающую качение цилиндра. При такой схеме ка­чение должно начаться, как видим, под действием любой, сколь угодно малой силы.

Истинная же картина, как пока­зывает опыт, выглядит иначе. Объяс­няется это тем, что фактически, вслед­ствие деформаций тел, касание их происходит вдоль некоторой площадки АВ (рис. 34, б). При действии силы интенсивность давлений у краяА убывает, а у края В воз­растает. В результате реакция оказывается смещенной в сторону действия силы. С увеличениемэто смещение растет до некото­рой предельной величиныk . Таким образом, в предельном положении на каток будут действовать пара (,) с моментоми уравно­вешивающая ее пара () с моментомNk. Из равенства моментов находим или

Пока , каток находится в покое; приначинается качение.

Входящая в формулу линейная величина k называется коэф­фициентом трения качения. Измеряют величину k обычно в санти­метрах. Значение коэффициента k зависит от материала тел и опре­деляется опытным путем.

Коэффициент трения качения при качении в первом приближении можно считать не зависящим от угловой скорости качения катка и его скорости скольжения по плоскости.

Для вагонного колеса по рельсу k=0,5 мм.Рассмотрим движение ведомого колеса. Качение колеса начнется, когда выполнится условиеQR>M или Q>M max /R=kN/RСкольжение колеса начнется, когда выполнится условие Q>F max =fN.Обычно отношение и качение начинается раньше скольжения.Если, то колесо будет скользить по поверхности, без качения.

Отношение для большинства материалов значительно меньше статического коэффициента трения . Этим объясняетсято, что в технике, когда это возможно, стремятся заменить скольжение качением (колеса, катки, шариковые подшипники и т. п.).

трением качения называется сопротивление, возникающее при качении одного тела по поверхности другого. Вследствие деформации тел их касание происходит вдоль площадки AB (рисунок 2.4, а), появляется распределенная система сил реакции (рисунок 2.4, б), которая может быть заменена силой и парой (рисунок 2.4, в).

Сила раскладывается на две составляющие – нормальную и силу трения скольжения. Пара сил называется моментом сопротивления качению M c .

Рисунок 2.4

При равновесии тела момент сопротивления качению определяется из условий равновесия системы сил. При этом установлено, что момент сопротивления принимает значения от нуля до максимального значения.

Максимальное значение момента сопротивления, соответствующее началу качения, определяется равенством

M c max = Nδ ,

где δ коэффициент трения качения , имеет размерность длины [м], зависит от материала контактирующих тел и геометрии зоны контакта.

Различают:

чистое качение – точка A (рисунок 2.4) не скользит по неподвижной плоскости;

качение со скольжением – наряду с вращением катка присутствует и проскальзывание в месте контакта, т.е. точка A движется по плоскости;

чистое скольжение – каток движется по плоскости, не имея вращения (см. п.2.1).

Для того, чтобы каток не скользил, необходимо условие F тр < F тр max ; чтобы каток не катился – M c < M c max = δN .

Также существует трение верчения – когда активные силы стремятся вращать тело вокруг нормали к общей касательной поверхности соприкосновения.

Парой сил называется система двух сил, равных по модулю, параллельных и направлен­ных в разные стороны.

Рассмотрим систему сил (Р; Б"), образую­щих пару.

Пара сил вызывает вращение тела и ее дей­ствие на тело оценивается моментом. Силы, входящие в пару, не уравновешиваются, т. к. они приложены к двум точкам (рис. 4.1).

Их действие на тело не может быть заменено од­ной силой (равнодействующей).

Момент пары сил численно равен произве­дению модуля силы на расстояние между лини­ями действия сил (плечо пары).

Момент считают положительным, если па­ра вращает тело по часовой стрелке (рис. 4.1(б)):

М(F;F") = Fa ; М > 0.

Плоскость, проходящая через линии дей­ствия сил пары, называется плоскостью действия пары.

Свойства пар (без доказательств):

1. Пару сил можно перемещать в плоскости ее действия.

2. Эквивалентность пар.

Две пары, моменты которых равны, (рис. 4.2) эквивалентны (действие их на тело аналогично).

3. Сложение пар сил. Систему пар сил можно заменить равно­действующей парой.

Момент равнодействующей пары равен алгебраической сумме моментов пар, составляющих систему (рис. 4.3):

4. Равновесие пар.

Для равновесия пар необходимо и достаточно, чтобы алгебраи­ческая сумма моментов пар системы равнялась нулю:

Конец работы -

Эта тема принадлежит разделу:

Теоретическая механика

Теоретическая механика.. лекция.. тема основные понятия и аксиомы статики..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Задачи теоретической механики
Теоретическая механика - наука о механическом движении материальных твердых тел и их взаимодействии. Механическое дви­жение понимается как перемещение тела в пространстве и во време­ни по от

Третья аксиома
Не нарушая механического состояния тела, можно добавить или убрать уравновешенную систему сил (принцип отбрасывания систе­мы сил, эквивалентной нулю) (рис. 1.3). Р,=Р2 Р,=Р.

Следствие из второй и третьей аксиом
Силу, действующую на твер­дое тело, можно перемещать вдоль линии ее действия (рис. 1.6).

Связи и реакции связей
Все законы и теоремы статики справедливы для свободного твердого тела. Все тела делятся на свободные и связанные. Свободные тела - тела, перемещение которых не ограничено.

Жесткий стержень
На схемах стержни изображают толсто сплошной линией (рис. 1.9). Стержень може

Неподвижный шарнир
Точка крепления пере­мещаться не может. Стер­жень может свободно повора­чиваться вокруг оси шарни­ра. Реакция такой опоры про­ходит через ось шарнира, но

Плоская система сходящихся сил
Система сил, линии действия которых пе­ресекаются в одной точке, называется сходя­щейся (рис. 2.1).

Равнодействующая сходящихся сил
Равнодействующую двух пересекающихся сил можно опреде­лить с помощью параллелограмма или треугольника сил (4-я ак­сиома) (вис. 2.2).

Условие равновесия плоской системы сходящихся сил
При равновесии системы сил равнодействующая должна быть равна нулю, следовательно, при геометрическом построении конец последнего вектора должен совпасть с началом первого. Если

Решение задач на равновесие геометрическим способом
Геометрическим способом удобно пользоваться, если в системе три силы. При решении задач на равновесие тело считать абсолютно твердым (отвердевшим). Порядок решения задач:

Решение
1. Усилия, возникающие в стержнях крепления, по величине равны силам, с которыми стержни поддерживают груз (5-я аксиома статики) (рис. 2.5а). Определяем возможные направления реакций связе

Проекция силы на ось
Проекция силы на ось определяется отрезком оси, отсекаемым перпендикулярами, опущенными на ось из начала и конца вектора (рис. 3.1).

Сил аналитическим способом
Величина равнодействующей равна векторной (геометрической) сумме векторов системы сил. Определяем равнодействующую геоме­трическим способом. Выберем систему координат, определим про­екции всех зада

Сходящихся сил в аналитической форме
Исходя из того, что равнодействующая равна нулю, получим: Усл

Момент силы относительно точки
Сила, не проходящая через точку крепления тела, вызывает вра­щение тела относительно точки, поэтому действие такой силы на тело оценивается моментом. Момент силы отн

Теорема Пуансо о параллельном переносе сил
Силу можно перенести параллельно линии ее действия, при этом нужно добавить пару сил с моментом, равным произведению модуля силы на расстояние, на которое перенесена сила.

Расположенных сил
Линии действия произвольной системы сил не пересекаются в одной точке, поэтому для оценки состояния тела такую систему следует упростить. Для этого все силы системы переносят в одну произ­вольно вы

Влияние точки приведения
Точка приведения выбрана произвольно. При изменении поло­жения точки приведения величина главного вектора не изменится. Величина главного момента при переносе точки приведения из­менится,

Плоской системы сил
1. При равновесии главный вектор системы равен нулю. Аналитическое определение главного вектора приводит к выводу:

Виды нагрузок
По способу приложения нагрузки делятся на сосредоточенные и распределенные. Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосре­доточенной

Момент силы относительно оси
Момент силы относительно оси равен моменту проекции силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с плоскостью (рис. 7.1 а). MOO

Вектор в пространстве
В пространстве вектор силы проецируется на три взаимно пер­пендикулярные оси координат. Проекции вектора образуют ребра прямоугольного параллелепипеда, век­тор силы совпадает с диагональю (рис. 7.2

Пространственная сходящаяся система сил
Пространственная сходящаяся система сил - система сил, не лежащих в одной плоскости, линии действия которых пересе­каются в одной точке. Равнодействующую пространственной системы си

Приведение произвольной пространственной системы сил к центру О
Дана пространственная система сил (рис. 7.5а). Приведем ее к центру О. Силы необходимо параллельно перемещать, при этом образует­ся система пар сил. Момент каждой из этих пар равен

Центр тяжести однородных плоских тел
(плоских фигур) Очень часто приходится определять центр тяжести различных плоских тел и геометрических плоских фигур сложной формы. Для плоских тел можно записать: V =

Определение координат центра тяжести плоских фигур
Примечание. Центр тяжести симметричной фигуры находится на оси симметрии. Центр тяжести стержня находится на середине высоты. Поло­жения центров тяжести простых геометрических фигур могут

Кинематика точки
Иметь представление о пространстве, времени, траектории, пути, скорости и ускорении.Знать способы задания движения точки (естественный и координатный). Знать обозначения, едини

Пройденный путь
Путь измеряется вдоль траектории в направлении движения. Обозначение - S, единицы измерения - метры. Уравнение движения точки: Уравнение, определяющ

Скорость движения
Векторная величина, характеризующая в данный момент бы­строту и направление движения по траектории, называется скоро­стью. Скорость - вектор, в любой момент направленный по к

Ускорение точки
Векторная величина, характеризующая быстроту изменения скорости по величине и направлению, называется ускорением точки. Скорость точки при перемещении из точки М1

Равномерное движение
Равномерное движение - это движение с постоянной скоро­стью: v = const. Для прямолинейного равномерного движения (рис. 10.1 а)

Равнопеременное движение
Равнопеременное движение - это движение с постоянным ка­сательным ускорением: at = const. Для прямолинейного равнопеременного движения

Поступательное движение
Поступательным называют такое движение твердого тела, при котором всякая прямая линия на теле при движении остается парал­лельной своему начальному положению (рис. 11.1, 11.2). При

Вращательное движение
При вращательном движении все точки тела описывают окруж­ности вокруг общей неподвижной оси. Неподвижная ось, вокруг которой вращаются все точки тела, называется осью вращения.

Частные случаи вращательного движения
Равномерное вращение (угловая скорость постоянна): ω =const Уравнение (закон) равномерного вращения в данном случае име­ет вид:

Скорости и ускорения точек вращающегося тела
Тело вращается вокруг точки О. Определим параметры дви­жения точки A , расположенной на расстоянии RA от оси вращения (рис. 11.6, 11.7). Путь

Решение
1. Участок 1 - неравномерное ускоренное движение, ω = φ’ ; ε = ω’ 2. Участок 2 - скорость постоянна - движение равномерное, . ω = const 3.

Основные определения
Сложным движением считают движение, которое можно разло­жить на несколько простых. Простыми движениями считают посту­пательное и вращательное. Для рассмотрения сложного движения точ

Плоскопараллельное движение твердого тела
Плоскопараллельным, или плоским, называется такое движение твердого тела, при котором все точки тела перемещаются парал­лельно некоторой неподвижной в рассматриваемой системе отсчета

Поступа­тельное и вращательное
Плоскопараллельное движение раскладывают на два движения: поступательное вместе с некоторым полюсом и вращательное от­носительно этого полюса. Разложение используют для опред

Центра скоростей
Скорость любой точки тела можно определять с помощью мгновенного центра скоростей. При этом сложное движение пред­ставляют в виде цепи вращений вокруг разных центров. Задача

Аксиомы динамики
Законы динамики обобщают результаты многочисленных опытов и наблюдений. Законы динамики, которые принято рассматривать как аксиомы, были сформулированы Ньютоном, но первый и четвертый законы были и

Понятие о трении. Виды трения
Трение - сопротивление, возникающее при движении одного шероховатого тела по поверхности другого. При скольжении тел воз­никает трение скольжения, при качении - трение качения. Природа сопро

Трение качения
Сопротивление при качении связано с взаимной деформацией грунта и колеса и значительно меньше трения скольжения. Обычно считают грунт мягче колеса, тогда в основном дефор­мируется грунт, и

Свободная и несвободная точки
Материальная точка, движение которой в пространстве не огра­ничено какими-нибудь связями, называется свободной. Задачи реша­ются с помощью основного закона динамики. Материальные то

Сила инерции
Инертность - способность сохранять свое состояние неизмен­ным, это внутреннее свойство всех материальных тел. Сила инерции - сила, возникающая при разгоне или торможе­нии тел

Решение
Активные силы: движущая сила, сила трения, сила тяжести. Ре­акция в опоре R. Прикладываем силу инерции в обратную от ускоре­ния сторону. По принципу Даламбера, система сил, действующих на платформу

Работа равнодействующей силы
Под действием системы сил точка массой т перемещается из положения М1 в положение M 2 (рис. 15.7). В случае движения под действием системы сил пользуютс

Мощность
Для характеристики работоспособности и быстроты соверше­ния работы введено понятие мощности. Мощность - работа, выполненная в единицу времени:

Мощность при вращении
Рис. 16.2 Тело движется по дуге радиуса из точки М1 в точку М2 М1М2 = φr Работа силы

Коэффициент полезного действия
Каждая машина и механизм, совершая работу, тратит часть энергии на преодоление вредных сопротивлений. Таким образом, машина (механизм) кроме полезной работы совершает еще и дополнитель

Теорема об изменении количества движения
Количеством движения материальной точки называется векторная величина, равная произведению массы точки на ее скорость mv. Вектор количества движения совпадает по

Теорема об изменении кинетической энергии
Энергией называется способность тела совершать механиче­скую работу. Существуют две формы механической энергии: потенциальная энергия, или энергия положения, и кинетическая энергия,

Основы динамики системы материальных точек
Совокупность материальных точек, связанных между собой силами взаимодействия, называется механической системой. Любое материальное тело в механике рассматривается как механическая

Основное уравнение динамики вращающегося тела
Пусть твердое тело под действием внешних сил вращается во­круг оси Оz с угловой скоростью

Напряжения
Метод сечений позволяет определить величину внутреннего си­лового фактора в сечении, но не дает возможности установить за­кон распределения внутренних сил по сечению. Для оценки прочно­сти н

Внутренние силовые факторы, напряжения. Построение эпюр
Иметь представление о продольных силах, о нормальных на­пряжениях в поперечных сечениях. Знать правила построения эпюр продольных сил и нормальных напряжений, закон распределения

Продольных сил
Рассмотрим брус, нагруженный внешними силами вдоль оси. Брус закреплен в стене (закрепление «заделка») (рис. 20.2а). Делим брус на участки нагружения. Участком нагружения с

Геометрические характеристики плоских сечений
Иметь представление о физическом смысле и порядке опре­деления осевых, центробежных и полярных моментов инерции, о главных центральных осях и главных центральных моментах инерции.

Статический момент площади сечения
Рассмотрим произвольное сечение (рис. 25.1). Если разбить сечение на бесконечно малые площадки dA и умножить каждую площадку на расстояние до оси координат и проинтегрировать получе

Центробежный момент инерции
Центробежным моментом инерции сечения называется взятая ковсей площади сумма произведений элементарных площадок на обе координаты:

Осевые моменты инерции
Осевым моментом инерции сечения относительно некоторой реи, лежащей в этой же плоскости, называется взятая по всей пло­щади сумма произведений элементарных площадок на квадрат их расстояния

Полярный момент инерции сечения
Полярным моментом инерции сечения относительно некоторой точки (полюса) называется взятая по всей площади сумма произве­дений элементарных площадок на квадрат их расстояния до этой точки:

Моменты инерции простейших сечений
Осевые моменты инерции прямоугольника (рис. 25.2) Представим прямо

Полярный момент инерции круга
Для круга вначале вычисляют поляр­ный момент инерции, затем - осевые. Представим круг в виде совокупности бесконечно тонких колец (рис. 25.3).

Деформации при кручении
Кручение круглого бруса происходит при нагружении его па­рами сил с моментами в плоскостях, перпендикулярных продольной оси. При этом образующие бруса искривляются и разворачиваются на угол γ,

Гипотезы при кручении
1. Выполняется гипотеза плоских сечений: поперечное сечение бруса, плоское и перпен- дикулярное продольной оси, после деформацииостается плоским и перпендикулярным продольной оси.

Внутренние силовые факторы при кручении
Кручением называется нагружение, при котором в поперечном сечении бруса возникает только один внутренний силовой фактор - крутящий момент. Внешними нагрузками также являются две про

Эпюры крутящих моментов
Крутящие моменты могут меняться вдоль оси бруса. После определения величин моментов по сечениям строим график-эпюру крутящих моментов вдоль оси бруса.

Напряжения при кручении
Проводим на поверхности бру­са сетку из продольных и попе­речных линий и рассмотрим рису­нок, образовавшийся на поверхно­сти после Рис. 27.1а деформации (рис. 27.1а). Поп

Максимальные напряжения при кручении
Из формулы для определения напряжений и эпюры распределе­ния касательных напряжений при кручении видно, что максималь­ные напряжения возникают на поверхности. Определим максимальное напряж

Виды расчетов на прочность
Существует два вида расчета на прочность 1. Проектировочный расчет - определяется диаметр бруса (вала) в опасном сечении:

Расчет на жесткость
При расчете на жесткость определяется деформация и сравни­вается с допускаемой. Рассмотрим деформацию круглого бруса над действием внешней пары сил с моментом т (рис. 27.4).

Основные определения
Изгибом называется такой вид нагружения, при котором в по­перечном сечении бруса возникает внутренний силовой фактор -изгибающий момент. Брус, работающий на

Внутренние силовые факторы при изгибе
Пример 1.Рассмотрим балку, на которую действует пара сил с моментом т и внешняя сила F (рис. 29.3а). Для определения вну­тренних силовых факторов пользуемся методом с

Изгибающих моментов
Поперечная сила в сече­нии считается положитель­ной, если она стремится раз­вернуть се

Дифференциальные зависимости при прямом поперечном изгибе
Построение эпюр поперечных сил и изгибающих моментов су­щественно упрощается при использовании дифференциальных зави­симостей между изгибающим моментом, поперечной силой и интен­сивностью равномерн

Методом сечения Полученное выражение можно обобщить
Поперечная сила в рассматриваемом сечении равна алгебраической сумме всех сил, действующих на балку до рассматриваемого сечения: Q = ΣFi Поскольку речь идет

Напряжения
Рассмотрим изгиб балки, защемленной справа и нагруженной сосредоточенной силой F (рис. 33.1).

Напряженное состояние в точке
Напряженное состояние в точке характеризуется нормальны­ми и касательными напряжениями, возникающими на всех площад­ках (сечениях), проходящих через данную точку. Обычно достаточ­но определить напр

Понятие о сложном деформированном состоянии
Совокупность деформаций, возникающих по различным напра­влениям и в различных плоскостях, проходящих через точку, опре­деляют деформированное состояние в этой точке. Сложное деформи

Расчет круглого бруса на изгиб с кручением
В случае расчета круглого бруса при действии изгиба и кру­чения (рис. 34.3) необходимо учитывать нормальные и касательные напряжения, т. к. максимальные значения напряжений в обоих слу­чаях возника

Понятие об устойчивом и неустойчивом равновесии
Относительно короткие и массивные стержни рассчитывают на сжатие, т.к. они выходят из строя в результате разрушения или остаточных деформаций. Длинные стержни небольшого поперечного сечения под дей

Расчет на устойчивость
Расчет на устойчивость заключается в определении допускае­мой сжимающей силы и в сравнении с ней силы действующей:

Расчет по формуле Эйлера
Задачу определения критической силы математиче­ски решил Л. Эйлер в 1744 г. Для шарнирно закрепленного с обеих сторон стержня (рис. 36.2) формула Эйлера имеет вид

Критические напряжения
Критическое напряжение - напряжение сжатия, соответству­ющее критической силе. Напряжение от сжимающей силы определяется по формуле

Пределы применимости формулы Эйлера
Формула Эйлера выполняется только в пределах упругих де­формаций. Таким образом, критическое напряжение должно быть меньше предела упругости материала. Пред

Парой сил называется система двух равных по модулю, параллельных и направленных в противоположные стороны сил, действующих на абсолютно твердое тело (рис. 32, а). Система сил F, F, образующих пару, очевидно, не находится в равновесии (эти силы не направлены вдоль одной прямой). В то же время пара сил не имеет равнодействующей, поскольку, как будет доказано, равнодействующая любой системы сил главному вектору т. е. сумме этих сил, а для пары Поэтому свойства пары сил, как особой меры механического взаимодействия тел, должны быть рассмотрены отдельно.

Плоскость, проходящая через линии действия пары сил, называется плоскостью действия пары. Расстояние d между линиями действия сил пары называется плечом пары. Действие пары сил на твердое тело сводится к некоторому вращательному эффекту, который характеризуется величиной, называемой моментом пары. Этот момент определяется: 1) его модулем, равным произведению положением в пространстве плоскости действия пары; 3) направлением поворота пары в этой плоскости. Таким образом, как и момент силы относительно центра, это величина векторная.

Введем следующее определение: моментом пары сил называется вектор (или М), модуль которого равен произведению модуля одной из сил пары на ее плечо и который направлен перпендикулярно плоскости действия пары в ту сторону, откуда пара видна стремящейся повернуть тело против хода часовой стрелки (рис. 32, б).

Заметим еще, что так как плечо силы F относительно точки А равно d, а плоскость, проходящая через точку А и силу F, совпадает с плоскостью действия пары, то одновременно

Но в отличие от момента силы вектор , как будет показано ниже, может быть приложен в любой точке (такой вектор называется свободным). Измеряется момент пары, как и момент силы, в ньютон-метрах.

Покажем, что моменту пары можно дать другое выражение: момент пары равен сумме моментов относительно любого центра О сил, образующих пару, т. е.

Для доказательства проведем из произвольной точки О (рис. 33) радиусы-векторы

Тогда согласно формуле (14), что получим и, следовательно,

Так как то справедливость равенства (15) доказана. Отсюда, в частности, следует уже отмеченный выше результат:

т. е. что момент пары равен моменту одной из ее сил относительно точки приложения другой силы. Отметим еще, что модуль момента пары

Если принять, что действие пары сил на твердое тело (ее вращательный эффект) полностью определяется значением суммы моментов сил пары относительно любого центра О, то из формулы (15) следует, что две пары сил, имеющие одинаковые моменты, эквивалентны, т. е. оказывают на тело одинаковое механическое действие. Иначе это означает, что две пары сил, независимо от того, где каждая из них расположена в данной плоскости (или в параллельных плоскостях) и чему равны в отдельности модули их сил и их плечи, если их моменты имеют одно и то же значение , будут эквивалентны. Так как выбор центра О произволен, то вектор можно считать приложенным в любой точке, т. е. это вектор свободный.

© 2024. maksimovasv.ru. Женский блог Максимовой Светланы.